Homework No. 01 (2020 Fall) PHYS 320: Electricity and Magnetism I

Due date: Monday, 2020 Aug 24, 2:00 PM, in class or on D2L

1. (10 points.) (Refer Problem 1.2, Griffiths 4th edition.)

Is the cross product associative?

$$
\begin{equation*}
\mathbf{A} \times(\mathbf{B} \times \mathbf{C}) \stackrel{?}{=}(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} . \tag{1}
\end{equation*}
$$

If so, prove it; If not, provide a counterexample.
2. (10 points.) (Based on Example 1.2, Griffiths 4th edition.)

Draw a cube with its eight vertex corners having coordinates $[(0,0,0),(1,0,0),(0,1,0)$, $(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)]$ such that its edges overlap each of the axes. Find the angle between a face diagonal obtained by connecting $(0,0,1) \rightarrow(1,1,1)$, and the body diagonal obtained by connecting $(0,0,0) \rightarrow(1,1,1)$, of the cube.
3. (10 points.) Using index notation and the antisymmetric property of the Levi-Civita symbol show that

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}=\mathbf{B} \cdot \mathbf{C} \times \mathbf{A}=-\mathbf{A} \cdot \mathbf{C} \times \mathbf{B} \tag{2}
\end{equation*}
$$

4. (20 points.) In three dimensions the Levi-Civita symbol is given in terms of the determinant of the Kronecker delta,

$$
\begin{align*}
\varepsilon_{i j k} \varepsilon_{l m n} & =\left|\begin{array}{lll}
\delta_{i l} & \delta_{i m} & \delta_{i n} \\
\delta_{j l} & \delta_{j m} & \delta_{j n} \\
\delta_{k l} & \delta_{k m} & \delta_{k n}
\end{array}\right| \tag{3a}\\
& =\delta_{i l}\left(\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}\right)-\delta_{i m}\left(\delta_{j l} \delta_{k n}-\delta_{j n} \delta_{k l}\right)+\delta_{i n}\left(\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}\right) \tag{3b}
\end{align*}
$$

Using the above identity show that

$$
\begin{equation*}
\varepsilon_{i j k} \varepsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m} \tag{4}
\end{equation*}
$$

Thus, derive the vector identity (using index notation)

$$
\begin{equation*}
(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C}) \tag{5}
\end{equation*}
$$

