Final Exam (Fall 2020)

PHYS 320: ELECTRICITY AND MAGNETISM I
Department of Physics, Southern Illinois University-Carbondale
Due date: Friday, 2020 Dec 11, 4:45 PM, on D2L

1. (20 points.) Evaluate

$$
\begin{equation*}
\nabla^{2}(\mathbf{r} \cdot \mathbf{a})^{2} \tag{1}
\end{equation*}
$$

given a is a constant vector.
2. ($\mathbf{2 0}$ points.) Evaluate the integral

$$
\begin{equation*}
\int_{-1}^{1} d x \delta(1-2 x)\left[8 x^{2}+2 x-1\right] \tag{2}
\end{equation*}
$$

(Caution: Be careful to avoid a possible error in sign.)
3. (20 points.) Consider a uniformly charged solid sphere of radius R with total charge Q.
(a) Using Gauss's law show that the electric field inside and outside the sphere is given by

$$
\mathbf{E}(\mathbf{r})= \begin{cases}\frac{Q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{R^{3}}, & r<R \tag{3}\\ \frac{Q}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}}{r^{3}}, & r>R\end{cases}
$$

where \mathbf{r} is the radial vector with respect to the center of sphere.
(b) Plot the magnitude of the electric field as a function of r.
4. (20 points.) The Legendre polynomials of order l satisfy the recurrence relation

$$
\begin{equation*}
(2 l+1) x P_{l}(x)=(l+1) P_{l+1}(x)+l P_{l-1}(x), \quad l=1,2,3, \ldots \tag{4}
\end{equation*}
$$

Recall,

$$
\begin{align*}
& P_{0}(x)=1, \tag{5a}\\
& P_{1}(x)=x \tag{5b}
\end{align*}
$$

Derive the explicit expression for $P_{3}(x)$ using the recurrence relation.
5. (20 points.) Determine the magnitude and direction of the electrostatic force on a positive charge placed a distance a away from a grounded perfectly conducting plate.

