Homework No. 04B (Fall 2020)

PHYS 203A: COLLEGE PHYSICS

Department of Physics, Southern Illinois University-Carbondale Due date: Thursday, 2020 Sep 24, 12:30pm, on D2L

Instructions

- Describe your thought process in detail and organize it clearly. Make sure your answer has the correct units and the right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (Assessments \rightarrow Assignments).

Questions

- 1. (10 points.) A m = 20.0 kg (mg = 196 N) block is at rest on a horizontal floor. The coefficient of static friction between the floor and the block is 0.50, and the coefficient of kinetic friction between the floor and the block is 0.40.
 - (a) What is the normal force N exerted on the block by the floor?
 - (b) Calculate the maximum static frictional force, $F_{f,\max} = \mu_s N$, possible between the block and floor.
 - (c) Calculate the kinetic frictional force, $F_f = \mu_k N$ between the block and floor if the block moves on the floor.
 - (d) While the block is initially at rest you exert a horizontal force of 85 N on the block. Will the block move? If yes, what will be its acceleration?
 - (e) While the block is initially at rest you exert a horizontal force of 105 N on the block. Will the block move? If yes, what will be its acceleration?
- 2. (10 points.) A trunk with a weight of 196 N rests on the floor. The coefficient of static friction between the trunk and the floor is 0.50, and the coefficient of kinetic friction is 0.40.
 - (a) What is the magnitude of the minimum horizontal force with which a person must push on the trunk to start it moving?
 - (b) Once the trunk is moving, what magnitude of horizontal force must the person apply to keep it moving with constant velocity?
 - (c) If the person continued to push with the force used to start the motion, what would be the magnitude of the trunk's acceleration?

- 3. (10 points.) A car is traveling at 70.0 miles/hour (= 31.3 m/s) on a horizontal highway. It is brought to a stop by slamming on the brakes, which amounts to the tires skidding (without rolling) on the road.
 - (a) What is the stopping distance when the surface is dry and the coefficient of kinetic friction μ_k between road and tires is 0.60?
 - (b) If the coefficient of kinetic friction between road and tires on a rainy day is 0.20, what is the minimum distance in which the car will stop?
- 4. (10 points.) A mass m = 20.0 kg is on an incline with coefficient of static friction $\mu_s = 0.80$ and coefficient of kinetic friction $\mu_k = 0.50$.

Figure 1: Problem 4.

- (a) Using Newton's law determine the equations of motion governing the motion of the mass.
- (b) Let $\theta = 30.0^{\circ}$.
 - i. Determine the normal force. (Answer: 170 N.)
 - ii. Determine the maximum static frictional force, $F_{f,\max} = \mu_s N$, possible between the mass and the incline. (Answer: $F_{f,\max} = 136 \text{ N.}$)
 - iii. Find the net force in the lateral direction other than friction. (Answer: $mg\sin\theta = 98$ N.)
 - iv. Determine the force of friction on the mass. (Answer: 98 N.)
 - v. Will the mass move? (Answer: No.)
- (c) Let $\theta = 45.0^{\circ}$.
 - i. Determine the normal force.
 - ii. Determine the maximum static frictional force, $F_{f,\max} = \mu_s N$, possible between the mass and the incline. (Answer: $F_{f,\max} = 110 \text{ N.}$)
 - iii. Find the net force in the lateral direction other than friction. (Answer: $mg\sin\theta = 139$ N.)
 - iv. Determine the force of friction on the mass. (Answer: $F_f = \mu_k N = 70 \text{ N.}$)
 - v. Will the mass move? (Answer: Yes.)
 - vi. Determine the acceleration of the resultant motion. (Answer: 3.5 m/s^2 .)

(d) Critical angle: As the angle of the incline is increased, there is a critical angle when the mass begins to move. For this case the force of friction is equal to the maximum static frictional force, $F_f = \mu_s N$, and the mass is at the verge of moving, $a_x = 0$. Show that the critical angle is given by

$$\theta_c = \tan^{-1} \mu_s,\tag{1}$$

which is independent of the mass m. Find the critical angle.