Midterm Exam No. 01 (Spring 2017) PHYS 510: Classical Mechanics

Date: 2017 Feb 28

1. (20 points.) Give an account of the functional derivative

$$
\begin{equation*}
\frac{\delta f(x)}{\delta f\left(x^{\prime}\right)}=\delta\left(x-x^{\prime}\right) \tag{1}
\end{equation*}
$$

2. (20 points.) Given

$$
\begin{equation*}
F[u]=\int_{x_{1}}^{x_{2}} d x a(x) \frac{d u(x)}{d x} . \tag{2}
\end{equation*}
$$

Evaluate

$$
\begin{equation*}
\frac{\delta F}{\delta u(x)} \tag{3}
\end{equation*}
$$

3. (20 points.) Find the geodesics on the surface of a circular cylinder. Identify these curves.
Hint: To have a visual perception of these geodesics it helps to note that a cylinder can be mapped (or cut open) into a plane.
4. (20 points.) Consider the coplanar double pendulum in Figure 1. In the small angle

Figure 1: Problem 4.
approximation the equations of motion for double pendulum reduce to

$$
\begin{align*}
& \ddot{\theta}_{1}+\omega_{1}^{2} \theta_{1}+\frac{\alpha}{\beta} \ddot{\theta}_{2}=0, \tag{4a}\\
& \ddot{\theta}_{2}+\omega_{2}^{2} \theta_{1}+\beta \ddot{\theta}_{1}=0, \tag{4b}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{1}^{2}=\frac{g}{a_{1}}, \quad \omega_{2}^{2}=\frac{g}{a_{2}}, \quad \alpha=\frac{m_{2}}{m_{1}+m_{2}}, \quad \beta=\frac{a_{1}}{a_{2}}=\frac{\omega_{2}^{2}}{\omega_{1}^{2}} . \tag{5}
\end{equation*}
$$

Note that $0 \leq \alpha \leq 1$. Determine the solution for the initial conditions

$$
\begin{equation*}
\theta_{1}(0)=0, \quad \theta_{2}(0)=0, \quad \dot{\theta}_{1}(0)=0, \quad \dot{\theta}_{2}(0)=\omega_{0} \tag{6}
\end{equation*}
$$

for $\alpha=1 / 2$ and $\beta=1$.

