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Hopefully the following will be suitable to be part of my forthcoming thesis. Since Green’s function
plays a major role in the techniques used, the following should easily fit in as a section.

This discussion was initiated to investigate the following question: How do the boundary con-
ditions on a differential equation translate over to the respective Green’s function. We claim that
the Green’s function equation does not make contact with the boundary conditions of the original
differential equation.

A. Introduction

A non-homogeneous linear differential equation can be written in the form

L x(t) = F (t) (1)

where L is a polynomial of order n in d

dt
with coefficients that are functions of time. F (t) is a prior given function

which is also called the ‘source’. The corresponding homogeneous linear differential equation is

L x0(t) = 0. (2)

The general solution x0(t) to eq. (2) is given as a linear superposition of n independent solutions to eq. (2) and n

arbitrary constants, corresponding to the n integration constants, which are fixed by the boundary conditions. If we
can determine any one solution x1(t) which satisfies eq. (1) the general solution to eq. (1) is given as

x(t) = x0(t) + x1(t) (3)

where x0(t), in this context, is called the homogeneous solution to eq. (1) and x1(t) in this situation is called the
particular solution to eq. (1). One would worry if another choice of the particular solution would also lead to the
same general solution. If x1(t) and x2(t) are two independent particular solutions that satisfy eq. (1), by subtracting
the two equations we get

L [x1(t) − (x2(t)] = 0. (4)

Thus, the arbitrariness in the general solution, x(t), due to the choice of the particular solution is of the form x0(t).
Green’s function method is a particular technique used for solving non-homogeneous linear differential equation.

The Green’s function corresponding to eq. (1) satisfies a non-homogeneous linear differential equation

L G(t, t′) = δ(t − t′) (5)

in which the source is a delta function. We shall denote the homogeneous solution to the Green’s function as G0(t, t
′)

and its particular solution as Ḡ(t − t′). Any function can be written as a linear superposition of delta functions
weighted by the function itself. This fact lets us write down the general solution to x(t) in terms of G(t, t′). We shall
show that the homogeneous solution G0(t, t

′) does not contribute to the general solution of x(t). This lets us write
the solution to x(t) in the form

x(t) =

∫ +∞

−∞

dt′Ḡ(t − t′)F (t′) + x0(t) (6)

where x0(t) is given in terms of n arbitrary constants. Thus a different particular solution Ḡ′(t − t′) will be off from
Ḡ(t − t′) by a homogeneous form, and since the homogeneous solution G0(t, t

′) does not contribute to x(t), any one
particular solution to the Green’s function is enough to write eq. (6).
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B. Differential equation

We shall consider the differential equation satisfied by x(t)

−

(

d2

dt2
+ ω2

)

x(t) = F (t) (7)

where F (t) is a prior given source, and the initial conditions are, x(0) = −A, and ẋ(0) = 0.

C. The corresponding Green’s function equation

The corresponding differential equation for the Green’s function, G(t, t′), is

−

(

d2

dt2
+ ω2

)

G(t, t′) = δ(t − t′). (8)

Integrating eq. (8) over an infinitesimal region around the point t′ lets us extract the information pertaining to the
continuity of the derivative of the Green’s function at t = t′. This reads as

−

{

d

dt
G(t − t′)

}
∣

∣

∣

∣

t=t′+ǫ

+

{

d

dt
G(t − t′)

}
∣

∣

∣

∣

t=t′−ǫ

= 1. (9)

We also observe that using equations (8) and (9) we can learn about the continuity of the Green’s function at t = t′.
In this regard we note that Eq. (9) can be satisfied with either the Green’s function being finitely discontinous at
t = t′, or it being continous at the point t = t′. In particular we could ask, can equations (8) and (9) accomodate a

finite discontinuity in the Green’s function? With a finite discontinuity in the Green’s function at t = t′ the d
2

dt2
G(t, t′)

term in eq. (8) will contribute a term involving the derivative of a delta function, which is not the required quantity

on the right hand side of the equation. On the contrary, with a Green’s function continous at t = t′ the d
2

dt2
G(t, t′)

term in eq. (8) will contribute a delta function, as required to balance the right hand side. Thus we conclude

− G(t − t′)|
t=t′+ǫ

+ G(t − t′)|
t=t′−ǫ

= 0. (10)

Thus, eq. (8), the differential equation for the Green’s function, inherently enforces two continuity conditions, given
in equations (9) and (10), on the Green’s function at t = t′.

The homogeneous differential equation corresponding to Eq. (8) is

−

(

d2

dt2
+ ω2

)

G0(t, t
′) = 0 (11)

where G0(t, t
′) is the corresponding homogeneous solution. The part of the Green’s function that satisfies eq. (8)

such as to privide the delta function term on the right hand side is called the particular solution. Thus in general we
can write

G(t, t′) = G0(t, t
′) + Ḡ(t − t′) (12)

where Ḡ(t − t′) is the particular solution. The homogeneous solution does not make any contact with the point t′,
and thus we do not require its functional dependence to be of the form t− t′. On the contrary, due to the presence of
the delta function in eq. (8), translational invariance requires the functional dependence of Ḡ to be of the form t− t′.
Before imposing any boundary conditions, both these solutions, G0(t, t

′) and Ḡ(t − t′), will be expressed in terms of
two arbitrary constants each. Also, difference between any two possible particular solutions will be a homogeneous
solution. Thus, in principle, any one choice of the particular solution summed to the homogeneous solution which
comes with two arbitrary constants defines a general solution to eq. (8).

D. Solution to x(t) in terms of G(t, t′)

We substitute t → t′ in eq. (7), multiply it by G(t − t′) and integrate it with respect to t′; independently, we
multiply eq. (8) with x(t′) and integrate it with respect to t′; and subsequently subtract the modified equations to
get

x(t) = xG0
(t) + x̄(t) (13)
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where the contribution to x(t) from the homogeneous part of the Green’s function is captured in

xG0
(t) =

∫ +∞

−∞

dt′G0(t, t
′)F (t′) +

∫ +∞

−∞

dt′G0(t, t
′)

d2

dt′2
x(t′) −

∫ +∞

−∞

dt′x(t′)
d2

dt′2
G0(t, t

′) (14)

which evaluates to zero when we use equations (7) and (11). Thus the homogeneous part of the Green’s function does
not contribute to x(t). The second term in eq. (13),

x̄(t) =

∫ +∞

−∞

dt′Ḡ(t, t′)F (t′) +

∫ +∞

−∞

dt′
d

dt′

[

Ḡ(t − t′)ẋ(t′) − x(t′)
d

dt′
Ḡ(t − t′)

]

=

∫ +∞

−∞

dt′Ḡ(t − t′)F (t′) + lim
τ2→+∞

(

ẋ(τ2) − x(τ2)
d

dτ2

)

Ḡ(t − τ2) − lim
τ1→−∞

(

ẋ(τ1) − x(τ1)
d

dτ1

)

Ḡ(t − τ1), (15)

where we isolated the surface terms using integration by parts. The limiting variables are assumed to satisfy τ1 <

{t, t′} < τ2. We note that the surface terms satisfy the homegeneous equation corresponding to eq. (7)

−

(

d2

dt2
+ ω2

) (

ẋ(τ) − x(τ)
d

dτ

)

Ḡ(t − τ) = 0 (16)

because the surface points, denoted by τ , never equals the variable t, i.e. τ 6= t. Since the homogeneous equation
corresponding to eq. (7) has oscillatory solutions we can write

x(t) =

∫ +∞

−∞

dt′Ḡ(t − t′)F (t′) + α0 eiωt + β0 e−iωt (17)

where α0 and β0 are the arbitrary numerical constants. The boundary conditions to eq. (7) takes away the arbitrariness
from α0 and β0.

In summary, the homogeneous part of the Green’s function does not contribute to x(t). The homogeneous part of
x(t) gets its contribution from, x(τ) and Ḡ(t−τ), where τ is evaluated at the surface. We shall look into the structure
of α0 and β0 in terms of the surface points in more detail in section G.

E. Solving for the Green’s function without imposing boundary conditions

With the above observations in mind we proceed to solve for the Green’s function. For all points, except t = t′, the
differential eq. (8) has no source term and thus reads like the eq. for G0(t, t

′) in eq. (11). This eq. has oscillatory
solutions, which could have different behaviour at t < t′ and t > t′, except for the constraint imposed by the continuity
conditions in eqs. (9) and (10). In terms of four arbitray functions of t′, A, B, C, and D, we can write

G(t, t′) =

{

A(t′) eiωt + B(t′) e−iωt if t < t′,

C(t′) eiωt + D(t′) e−iωt if t > t′.
(18)

Imposing the continuity conditions in eqs. (9) and (10) we get the following equations constraining A(t′), B(t′), C(t′),
and D(t′):

[C(t′) − A(t′)] eiωt
′

+ [D(t′) − B(t′)] e−iωt
′

= 0 (19)

[C(t′) − A(t′)] eiωt
′

+ [D(t′) − B(t′)] e−iωt
′

=
i

ω
. (20)

From the structure of the above the constraints we observe that the equations let us solve for in combinations A& C,
and B & D. This lets us solve for G(t, t′) in the following four forms:

G(t, t′) = A(t′) eiωt + B(t′) e−iωt + ḠR(t − t′) (21a)

= C(t′) eiωt + D(t′) e−iωt + ḠA(t − t′) (21b)

= A(t′) eiωt + D(t′) e−iωt + ḠF (t − t′) (21c)

= C(t′) eiωt + B(t′) e−iωt + ḠW (t − t′) (21d)
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where

ḠR(t − t′) = −
1

ω

1

2i

[

+ θ(t − t′) eiω(t−t
′) − θ(t − t′) e−iω(t−t

′)
]

= −
1

ω
θ(t − t′) sinω(t − t′) (22a)

ḠA(t − t′) = −
1

ω

1

2i

[

− θ(t′ − t) eiω(t−t
′) + θ(t′ − t) e−iω(t−t

′)
]

= +
1

ω
θ(t′ − t) sinω(t − t′) (22b)

ḠF (t − t′) = −
1

ω

1

2i

[

+ θ(t − t′) eiω(t−t
′) + θ(t′ − t) e−iω(t−t

′)
]

(22c)

ḠW (t − t′) = −
1

ω

1

2i

[

− θ(t′ − t) eiω(t−t
′) − θ(t − t′) e−iω(t−t

′)
]

(22d)

and the subscripts stand for retarded, advanced, Fynmann, and Wheeler, respectively. It is easy to recognize that
the above four forms are special cases of the following general expression for Ḡ(t − t′)

Ḡ(t − t′) = −
1

ω

1

2i
[ a θ(t − t′) − b θ(t′ − t)] eiω(t−t

′) +
1

ω

1

2i
[ c θ(t − t′) − d θ(t′ − t)] e−iω(t−t

′) (23)

where the numerical constants a, b, c, and d, are arbitrary to the extent that they obey the constraints a + b = 1,
and c + d = 1. The special cases, a = 1, c = 1, corresponds to ḠR; a = 0, c = 0, corresponds to ḠA; a = 1, c = 0,
corresponds to ḠF ; and a = 0, c = 1, corresponds to ḠW , respectively. As we mentioned earlier the particular Green’s
function Ḡ(t − t′) is not unique due to the arbitrariness in the choice of a and c. We also said that the difference
between any two particular solutions will be a homogeneous solution. This can be illustrated by making finite changes
in a and c given as, a′ = a+ δ1, and c′ = c+ δ2, and studying for the variation in Ḡ(t− t′) due to this change. We get

∆Ḡ(t − t′) = −
1

ω

1

2i
[ δ1 θ(t − t′) + δ1 θ(t′ − t)] eiω(t−t

′) +
1

ω

1

2i
[ δ2 θ(t − t′) + δ2 θ(t′ − t)] e−iω(t−t

′) (24)

= −
1

ω

1

2i
eiω(t−t

′) +
1

ω

1

2i
e−iω(t−t

′) (25)

which indeed can be absorbed into the homegeneous part of the solution.

F. Solution to x(t)

Subjecting eq. (17), in conjunction with eq. (23), to the initial conditions x(0) = −A and ẋ(0) = 0 we get

α0 + β0 = −A +
1

2iω

∫ 0

−∞

dt′F (t′)
[

a e−iωt
′

− c eiωt
′

]

−
1

2iω

∫ +∞

0

dt′F (t′)
[

b e−iωt
′

− d eiωt
′

]

(26)

α0 − β0 = −0 +
1

2iω

∫ 0

−∞

dt′F (t′)
[

a e−iωt
′

+ c eiωt
′

]

−
1

2iω

∫ +∞

0

dt′F (t′)
[

b e−iωt
′

+ d eiωt
′

]

(27)

where the differentiations with respect to the limits on the integrals contributes zero because they total up to

1

ω

1

2i
F (0) [(a + b) − (c + d)] = 0 (28)

because a + b = c + d = 1. Solving for α0 and β0, in the above equations, gives us

α0 = −
A

2
+ a

1

ω

1

2i

∫ 0

−∞

dt′F (t′)e−iωt
′

− b
1

ω

1

2i

∫ +∞

0

dt′F (t′)e−iωt
′

(29a)

β0 = −
A

2
− c

1

ω

1

2i

∫ 0

−∞

dt′F (t′)e+iωt
′

+ d
1

ω

1

2i

∫ +∞

0

dt′F (t′)e+iωt
′

. (29b)

Using the above expressions for α0 and β0 in eq. (17) we get

x(t) = −A cosωt − (a + b)
1

2iω

∫ t

0

dt′F (t′)eiω(t−t
′) + (c + d)

1

2iω

∫ t

0

dt′F (t′)e−iω(t−t
′) (30)

= −A cosωt −
1

ω

∫ t

0

dt′F (t′) sin ω(t − t′) (31)

where we used a + b = 1 and c + d = 1. Differentiating the above expression with t gives us

ẋ(t) = +ωA sin ωt −

∫ t

0

dt′F (t′) cosω(t − t′) (32)

where the differentiation with respect to the integration limit in eq. (31) contributed zero.
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G. Consistency check

Let us evaluate α0 and β0 using a different route. Let us get back to eq. (15). Let us define the functions

S±(τ) =
1

ω

1

2i

(

ẋ(τ) − x(τ)
d

dτ

)

e±iωτ

= ±
A

2
−

1

ω

1

2i

∫ τ

0

dt′F (t′)e±iωt
′

(33)

where we used equations (31) and (32) for the evaluation. In terms of the finctions S±(τ) we can write the surface
terms in eq. (15) as

lim
τ2→+∞

(

ẋ(τ2) − x(τ2)
d

dτ2

)

Ḡ(t − τ2) = + b S−(+∞)e+iωt − dS+(+∞)e−iωt (34a)

lim
τ1→−∞

(

ẋ(τ1) − x(τ1)
d

dτ1

)

Ḡ(t − τ1) = − a S−(−∞)e+iωt + c S+(−∞)e−iωt. (34b)

Using the above expressions for the surface terms in eq. (15) in conjunction with eq. (17) gives us

α0 = + a S−(−∞) + b S−(+∞)

= −
A

2
+ a

1

ω

1

2i

∫ 0

−∞

dt′F (t′)e−iωt
′

− b
1

ω

1

2i

∫ +∞

0

dt′F (t′)e−iωt
′

(35a)

β0 = − c S+(−∞) − dS+(+∞)

= −
A

2
− c

1

ω

1

2i

∫ 0

−∞

dt′F (t′)e+iωt
′

+ d
1

ω

1

2i

∫ +∞

0

dt′F (t′)e+iωt
′

(35b)

which is exactly the expressions we got earlier in eq. (29).

APPENDIX A

1. Contour integral representation of eq.(23)

We shall begin by noting the following integral representations:

lim
ǫ→0+

∫ +∞

−∞

dω
eiωx

ω − (a + iǫ)
= +2πi θ(x)eiax (A1)

lim
ǫ→0+

∫ +∞

−∞

dω
eiωx

ω − (a − iǫ)
= −2πi θ(−x)eiax (A2)


