Homework No. 07 (Fall 2013) PHYS 520A: Electromagnetic Theory I

Due date: Monday, 2013 Dec 2, 4.30pm

1. Consider the integral equation

$$
\begin{equation*}
K\left(t^{\prime}, t^{\prime \prime}\right)+i \int_{0}^{t} d \tau\left[1+i t_{<}\left(t^{\prime}, \tau\right)\right] K\left(\tau, t^{\prime \prime}\right)=\delta\left(t^{\prime}-t^{\prime \prime}\right), \quad 0 \leq\left\{t^{\prime}, t^{\prime \prime}\right\} \leq t \tag{1}
\end{equation*}
$$

where $t_{<}\left(t^{\prime}, \tau\right)$ stands for minimum of t^{\prime} and τ.
(a) By differentiating the above integral equation in Eq. (1) twice with respect to t^{\prime} obtain the differential equation satisfied by $K\left(t^{\prime}, t^{\prime \prime}\right)$:

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial t^{\prime 2}}+1\right] K\left(t^{\prime}, t^{\prime \prime}\right)=\frac{\partial^{2}}{\partial t^{\prime 2}} \delta\left(t^{\prime}-t^{\prime \prime}\right) \tag{2}
\end{equation*}
$$

(b) Deduce the boundary conditions on $K\left(t^{\prime}, t^{\prime \prime}\right)$ from Eq. (1):

$$
\begin{align*}
& K\left(0, t^{\prime \prime}\right)=-i \int_{0}^{t} d \tau K\left(\tau, t^{\prime \prime}\right) \tag{3a}\\
& K\left(t, t^{\prime \prime}\right)=K\left(0, t^{\prime \prime}\right)+\int_{0}^{t} d \tau \tau K\left(\tau, t^{\prime \prime}\right) \tag{3b}
\end{align*}
$$

Hint: Presume that the δ-function in Eq. (1) does not contribute at $t^{\prime}=0$ and $t^{\prime}=t$. This assumption does not effect the solution, but leads to non-trivial contributions at the boundaries of integrals involving $K\left(t, t^{\prime \prime}\right)$.
(c) In terms of a Green's function $M\left(t^{\prime}, t^{\prime \prime}\right)$, which satisfies

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial t^{\prime 2}}+1\right] M\left(t^{\prime}, t^{\prime \prime}\right)=\delta\left(t^{\prime}-t^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

write

$$
\begin{equation*}
K\left(t^{\prime}, t^{\prime \prime}\right)=\frac{\partial^{2}}{\partial t^{2}} M\left(t^{\prime}, t^{\prime \prime}\right)=\delta\left(t^{\prime}-t^{\prime \prime}\right)-M\left(t^{\prime}, t^{\prime \prime}\right) \tag{5}
\end{equation*}
$$

(d) Derive the continuity conditions for $M\left(t^{\prime}, t^{\prime \prime}\right)$, which are dictated by Eq. (4), to be

$$
\begin{align*}
\left\{M\left(t^{\prime}, t^{\prime \prime}\right)\right\}_{t^{\prime}=t^{\prime \prime}+\delta}-\left\{M\left(t^{\prime}, t^{\prime \prime}\right)\right\}_{t^{\prime}=t^{\prime \prime}-\delta} & =0 \tag{6a}\\
\left\{\frac{\partial}{\partial t^{\prime}} M\left(t^{\prime}, t^{\prime \prime}\right)\right\}_{t^{\prime}=t^{\prime \prime}+\delta}-\left\{\frac{\partial}{\partial t^{\prime}} M\left(t^{\prime}, t^{\prime \prime}\right)\right\}_{t^{\prime}=t^{\prime \prime}-\delta} & =1 \tag{6b}
\end{align*}
$$

Additionally, the boundary conditions on $M\left(t^{\prime}, t^{\prime \prime}\right)$ are prescribed by the boundary conditions on $K\left(t^{\prime}, t^{\prime \prime}\right)$ in Eqs. (3a) and (3b).
(e) Write the solution to $M\left(t^{\prime}, t^{\prime \prime}\right)$ in the form

$$
M\left(t^{\prime}, t^{\prime \prime}\right)= \begin{cases}\alpha\left(t^{\prime \prime}\right) \sin t^{\prime}+\beta\left(t^{\prime \prime}\right) \cos t^{\prime}, & 0 \leq t^{\prime}<t^{\prime \prime} \leq t \tag{7}\\ \eta\left(t^{\prime \prime}\right) \sin t^{\prime}+\xi\left(t^{\prime \prime}\right) \cos t^{\prime}, & 0 \leq t^{\prime \prime}<t^{\prime} \leq t\end{cases}
$$

in terms of four arbitrary constants. Use the continuity conditions (6) to determine two of the four constants to obtain

$$
\begin{equation*}
K\left(t^{\prime}, t^{\prime \prime}\right)=\delta\left(t^{\prime}-t^{\prime \prime}\right)-\alpha\left(t^{\prime \prime}\right) \sin t^{\prime}-\xi\left(t^{\prime \prime}\right) \cos t^{\prime}-\sin t_{>} \cos t_{<}, \tag{8}
\end{equation*}
$$

where we have suppressed the t^{\prime} and $t^{\prime \prime}$ dependence in $t_{<}\left(t^{\prime}, t^{\prime \prime}\right)$ and $t_{>}\left(t^{\prime}, t^{\prime \prime}\right)$.
(f) Use the expression for $K\left(t^{\prime}, t^{\prime \prime}\right)$ in Eq. (8) into Eqs. (3a) and (3b) to obtain the equations determining $\alpha\left(t^{\prime \prime}\right)$ and $\xi\left(t^{\prime \prime}\right)$ to be

$$
\begin{align*}
\alpha\left(t^{\prime \prime}\right) i[1-\cos t]+\xi\left(t^{\prime \prime}\right)[1+i \sin t] & =i \cos t \cos t^{\prime \prime}-\sin t^{\prime \prime} \tag{9a}\\
\alpha\left(t^{\prime \prime}\right) \cos t-\xi\left(t^{\prime \prime}\right) \sin t & =-\cos t \cos t^{\prime \prime} \tag{9b}
\end{align*}
$$

and further obtain

$$
\begin{align*}
\alpha\left(t^{\prime \prime}\right) & =-e^{-i t} \cos \left(t-t^{\prime \prime}\right) \tag{10a}\\
\xi\left(t^{\prime \prime}\right) & =i e^{-i\left(t-t^{\prime \prime}\right)} \cos t \tag{10b}
\end{align*}
$$

(g) Using Eqs. (10a) and (10b) in Eq. (8) obtain the solution to $K\left(t^{\prime}, t^{\prime \prime}\right)$ in the form

$$
\begin{equation*}
K\left(t^{\prime}, t^{\prime \prime}\right)=\delta\left(t^{\prime}-t^{\prime \prime}\right)-i \cos \left(t-t^{\prime}\right) \cos \left(t-t^{\prime \prime}\right)-\sin \left(t-t_{<}\right) \cos \left(t-t_{>}\right) \tag{11}
\end{equation*}
$$

(h) By substitution verify that Eq. (11) satisfies the original integral equation (1).

