(Optional) Homework No. 06 (Fall 2013) PHYS 520A: Electromagnetic Theory I

Due date: No submission required.

A forced harmonic oscillator is described by the differential equation

$$
\begin{equation*}
-\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right) x(t)=F(t) \tag{1}
\end{equation*}
$$

with appropriate initial conditions, say,

$$
\begin{equation*}
x(0)=-A, \quad \text { and } \quad \dot{x}(0)=\left.\frac{d x(t)}{d t}\right|_{t=0}=0 \tag{2}
\end{equation*}
$$

Here ω is the angular frequency of the oscillator and $F(t)$ is a priori given forcing function (or the source). The corresponding Green's function satisfies

$$
\begin{equation*}
-\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right) G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \tag{3}
\end{equation*}
$$

1. Show that the solution, $x(t)$, to the differential equation in Eq. (1), is given in terms of the Greens function by

$$
\begin{align*}
x(t)= & \int_{-\infty}^{+\infty} d t^{\prime} G\left(t, t^{\prime}\right) F\left(t^{\prime}\right)+\int_{-\infty}^{+\infty} d t^{\prime} \frac{d}{d t^{\prime}}\left[\left(x\left(t^{\prime}\right)-x\left(t^{\prime}\right) \frac{d}{d t^{\prime}}\right) G\left(t, t^{\prime}\right)\right] \tag{4}\\
= & \int_{-\infty}^{+\infty} d t^{\prime} G\left(t, t^{\prime}\right) F\left(t^{\prime}\right) \\
& +\lim _{\tau_{2} \rightarrow+\infty}\left[x\left(\tau_{2}\right)-x\left(\tau_{2}\right) \frac{d}{d \tau_{2}}\right] G\left(t, \tau_{2}\right)-\lim _{\tau_{1} \rightarrow-\infty}\left[x\left(\tau_{1}\right)-x\left(\tau_{1}\right) \frac{d}{d \tau_{1}}\right] G\left(t, \tau_{1}\right), \tag{5}
\end{align*}
$$

where the limiting variables in the second equality are constructed such that $\tau_{1}<\left\{t, t^{\prime}\right\}<$ τ_{2}.
2. The corresponding homogeneous differential equation is

$$
\begin{equation*}
-\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right) x_{0}(t)=0 . \quad \text { and } \quad-\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right) G_{0}\left(t, t^{\prime}\right)=0 \tag{6}
\end{equation*}
$$

(a) Show that for a Greens function, $G\left(t, t^{\prime}\right)$, that solves Eq. (3),

$$
\begin{equation*}
G\left(t, t^{\prime}\right)+G_{0}\left(t, t^{\prime}\right) \tag{7}
\end{equation*}
$$

is also a solution to Eq. (3).
(b) Show that the homogeneous solution of the Greens function does not contribute to $x(t)$ by showing that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d t^{\prime} G_{0}\left(t, t^{\prime}\right) F\left(t^{\prime}\right)+\int_{-\infty}^{+\infty} d t^{\prime} \frac{d}{d t^{\prime}}\left[\left(x\left(t^{\prime}\right)-x\left(t^{\prime}\right) \frac{d}{d t^{\prime}}\right) G_{0}\left(t, t^{\prime}\right)\right]=0 \tag{8}
\end{equation*}
$$

(c) Argue that the surface terms in Eq. (3) satisfy the homogeneous differential equation in Eq. (6)

$$
\begin{equation*}
-\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right)\left[\left(\dot{x}(\tau)-x(\tau) \frac{d}{d \tau}\right) \bar{G}(t, \tau)\right]=0 \tag{9}
\end{equation*}
$$

because the surface points, denoted by τ above, never equals the variable t, i.e. $\tau \neq t$.
3. Beginning with Eq. (3) derive the continuity conditions satisfied by the Greens function at $t=t^{\prime}$ to be

$$
\begin{equation*}
\left.\frac{d}{d t} G\left(t, t^{\prime}\right)\right|_{t=t^{\prime}-\delta} ^{t=t^{\prime}+\delta}=-1 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.G\left(t, t^{\prime}\right)\right|_{t=t^{\prime}-\delta} ^{t=t^{\prime}+\delta}=0 \tag{11}
\end{equation*}
$$

4. For all points, except $t=t^{\prime}$, the differential Eq. (3) has no source term and thus reads like the equation for $G_{0}\left(t, t^{\prime}\right)$ in Eq.(6). This equation has oscillatory solutions, which could have different behavior at $t<t^{\prime}$ and $t>t^{\prime}$, except for the constraint imposed by the continuity conditions in Eqs. (10) and (11). In terms of four arbitrary functions of t^{\prime}, A, B, C, and D, we can write

$$
G\left(t, t^{\prime}\right)= \begin{cases}A\left(t^{\prime}\right) e^{i \omega t}+B\left(t^{\prime}\right) e^{-i \omega t}, & \text { if } t<t^{\prime} \tag{12}\\ C\left(t^{\prime}\right) e^{i \omega t}+D\left(t^{\prime}\right) e^{-i \omega t}, & \text { if } t>t^{\prime}\end{cases}
$$

Imposing the continuity conditions in Eqs. (10) and (11) derive the following equations constraining $A\left(t^{\prime}\right), B\left(t^{\prime}\right), C\left(t^{\prime}\right)$, and $D\left(t^{\prime}\right)$:

$$
\begin{align*}
& {\left[C\left(t^{\prime}\right)-A\left(t^{\prime}\right)\right] e^{i \omega t^{\prime}}+\left[D\left(t^{\prime}\right)-B\left(t^{\prime}\right)\right] e^{-i \omega t^{\prime}}=0} \tag{13}\\
& {\left[C\left(t^{\prime}\right)-A\left(t^{\prime}\right)\right] e^{i \omega t^{\prime}}-\left[D\left(t^{\prime}\right)-B\left(t^{\prime}\right)\right] e^{-i \omega t^{\prime}}=\frac{i}{\omega}} \tag{14}
\end{align*}
$$

5. Using the continuity conditions and without imposing any boundary conditions solve for $G\left(t, t^{\prime}\right)$ in the following four forms:

$$
\begin{align*}
G\left(t, t^{\prime}\right) & =A\left(t^{\prime}\right) e^{i \omega t}+B\left(t^{\prime}\right) e^{-i \omega t}+G_{R}\left(t-t^{\prime}\right) \tag{15a}\\
& =C\left(t^{\prime}\right) e^{i \omega t}+D\left(t^{\prime}\right) e^{-i \omega t}+G_{A}\left(t-t^{\prime}\right) \tag{15b}\\
& =A\left(t^{\prime}\right) e^{i \omega t}+D\left(t^{\prime}\right) e^{-i \omega t}+G_{F}\left(t-t^{\prime}\right) \tag{15c}\\
& =C\left(t^{\prime}\right) e^{i \omega t}+B\left(t^{\prime}\right) e^{-i \omega t}+G_{W}\left(t-t^{\prime}\right) \tag{15d}
\end{align*}
$$

where

$$
\begin{align*}
G_{R}\left(t-t^{\prime}\right) & =-\frac{1}{\omega} \theta\left(t-t^{\prime}\right) \sin \omega\left(t-t^{\prime}\right) \tag{16a}\\
G_{A}\left(t-t^{\prime}\right) & =+\frac{1}{\omega} \theta\left(t^{\prime}-t\right) \sin \omega\left(t-t^{\prime}\right) \tag{16b}\\
G_{F}\left(t-t^{\prime}\right) & =-\frac{1}{\omega} \frac{1}{2 i}\left[+\theta\left(t-t^{\prime}\right) e^{i \omega\left(t-t^{\prime}\right)}+\theta\left(t^{\prime}-t\right) e^{-i \omega\left(t-t^{\prime}\right)}\right] \tag{16c}\\
G_{W}\left(t-t^{\prime}\right) & =-\frac{1}{\omega} \frac{1}{2 i}\left[-\theta\left(t^{\prime}-t\right) e^{i \omega\left(t-t^{\prime}\right)}-\theta\left(t-t^{\prime}\right) e^{-i \omega\left(t-t^{\prime}\right)}\right] \tag{16d}
\end{align*}
$$

and the subscripts stand for retarded, advanced, Feynman, and Wheeler, respectively. Recognize that the above four forms are special cases of the following general expression

$$
\begin{equation*}
-\frac{1}{\omega} \frac{1}{2 i}\left[a \theta\left(t-t^{\prime}\right)-b \theta\left(t^{\prime}-t\right)\right] e^{i \omega\left(t-t^{\prime}\right)}+\frac{1}{\omega} \frac{1}{2 i}\left[c \theta\left(t-t^{\prime}\right)-d \theta\left(t^{\prime}-t\right)\right] e^{-i \omega\left(t-t^{\prime}\right)}, \tag{17}
\end{equation*}
$$

where the numerical constants a, b, c, and d, are arbitrary to the extent that they obey the constraints $a+b=1$, and $c+d=1$. The special cases, $a=1, c=1$, corresponds to $G_{R} ; a=0, c=0$, corresponds to $G_{A} ; a=1, c=0$, corresponds to $G_{F} ;$ and $a=0, c=1$, corresponds to G_{W}, respectively.
6. Show that we can write

$$
\begin{equation*}
x(t)=\int_{-\infty}^{+\infty} d t^{\prime} G\left(t-t^{\prime}\right) F\left(t^{\prime}\right)+\alpha_{0} e^{i \omega t}+\beta_{0} e^{-i \omega t} \tag{18}
\end{equation*}
$$

where α_{0} and β_{0} are the arbitrary numerical constants. Use the initial conditions of Eq. (2) in Eq. (18), in conjunction with Eq. (17), to derive

$$
\begin{align*}
& \alpha_{0}=-\frac{A}{2}+a \frac{1}{\omega} \frac{1}{2 i} \int_{-\infty}^{0} d t^{\prime} F\left(t^{\prime}\right) e^{-i \omega t^{\prime}}-b \frac{1}{\omega} \frac{1}{2 i} \int_{0}^{+\infty} d t^{\prime} F\left(t^{\prime}\right) e^{-i \omega t^{\prime}} \tag{19a}\\
& \beta_{0}=-\frac{A}{2}-c \frac{1}{\omega} \frac{1}{2 i} \int_{-\infty}^{0} d t^{\prime} F\left(t^{\prime}\right) e^{+i \omega t^{\prime}}+d \frac{1}{\omega} \frac{1}{2 i} \int_{0}^{+\infty} d t^{\prime} F\left(t^{\prime}\right) e^{+i \omega t^{\prime}} \tag{19b}
\end{align*}
$$

Using the above expressions for α_{0} and β_{0} in Eq. (18) obtain

$$
\begin{equation*}
x(t)=-A \cos \omega t-\frac{1}{\omega} \int_{0}^{t} d t^{\prime} F\left(t^{\prime}\right) \sin \omega\left(t-t^{\prime}\right) \tag{20}
\end{equation*}
$$

which uses $a+b=1$ and $c+d=1$.

