
(Optional) Homework No. 06 (Fall 2013)

PHYS 520A: Electromagnetic Theory I

Due date: No submission required.

A forced harmonic oscillator is described by the differential equation

−

(

d2

dt2
+ ω2

)

x(t) = F (t), (1)

with appropriate initial conditions, say,

x(0) = −A, and ẋ(0) =
dx(t)

dt

∣

∣

∣

∣

t=0

= 0. (2)

Here ω is the angular frequency of the oscillator and F (t) is a priori given forcing function (or
the source). The corresponding Green’s function satisfies

−

(

d2

dt2
+ ω2

)

G(t, t′) = δ(t− t′). (3)

1. Show that the solution, x(t), to the differential equation in Eq. (1), is given in terms of
the Greens function by

x(t) =

∫ +∞

−∞

dt′G(t, t′)F (t′) +

∫ +∞

−∞

dt′
d

dt′

[(

x(t′)− x(t′)
d

dt′

)

G(t, t′)

]

(4)

=

∫ +∞

−∞

dt′G(t, t′)F (t′)

+ lim
τ2→+∞

[

x(τ2)− x(τ2)
d

dτ2

]

G(t, τ2)− lim
τ1→−∞

[

x(τ1)− x(τ1)
d

dτ1

]

G(t, τ1), (5)

where the limiting variables in the second equality are constructed such that τ1 < {t, t′} <

τ2.

2. The corresponding homogeneous differential equation is

−

(

d2

dt2
+ ω2

)

x0(t) = 0. and −

(

d2

dt2
+ ω2

)

G0(t, t
′) = 0. (6)

(a) Show that for a Greens function, G(t, t′), that solves Eq. (3),

G(t, t′) +G0(t, t
′) (7)

is also a solution to Eq. (3).
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(b) Show that the homogeneous solution of the Greens function does not contribute to
x(t) by showing that

∫ +∞

−∞

dt′G0(t, t
′)F (t′) +

∫ +∞

−∞

dt′
d

dt′

[(

x(t′)− x(t′)
d

dt′

)

G0(t, t
′)

]

= 0. (8)

(c) Argue that the surface terms in Eq. (3) satisfy the homogeneous differential equation
in Eq. (6)

−

(

d2

dt2
+ ω2

)[(

ẋ(τ)− x(τ)
d

dτ

)

Ḡ(t, τ)

]

= 0, (9)

because the surface points, denoted by τ above, never equals the variable t, i.e.
τ 6= t.

3. Beginning with Eq. (3) derive the continuity conditions satisfied by the Greens function
at t = t′ to be

d

dt
G(t, t′)

∣

∣

∣

t=t′+δ

t=t′−δ

= −1 (10)

and

G(t, t′)
∣

∣

∣

t=t′+δ

t=t′−δ

= 0. (11)

4. For all points, except t = t′, the differential Eq. (3) has no source term and thus reads
like the equation for G0(t, t

′) in Eq.(6). This equation has oscillatory solutions, which
could have different behavior at t < t′ and t > t′, except for the constraint imposed by
the continuity conditions in Eqs. (10) and (11). In terms of four arbitrary functions of t′,
A, B, C, and D, we can write

G(t, t′) =

{

A(t′) eiωt +B(t′) e−iωt, if t < t′,

C(t′) eiωt +D(t′) e−iωt, if t > t′.
(12)

Imposing the continuity conditions in Eqs. (10) and (11) derive the following equations
constraining A(t′), B(t′), C(t′), and D(t′):

[C(t′)− A(t′)] eiωt
′

+ [D(t′)− B(t′)] e−iωt′ = 0, (13)

[C(t′)−A(t′)] eiωt
′

− [D(t′)− B(t′)] e−iωt′ =
i

ω
. (14)

5. Using the continuity conditions and without imposing any boundary conditions solve for
G(t, t′) in the following four forms:

G(t, t′) = A(t′) eiωt +B(t′) e−iωt +GR(t− t′) (15a)

= C(t′) eiωt +D(t′) e−iωt +GA(t− t′) (15b)

= A(t′) eiωt +D(t′) e−iωt +GF (t− t′) (15c)

= C(t′) eiωt +B(t′) e−iωt +GW (t− t′) (15d)
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where

GR(t− t′) = −
1

ω
θ(t− t′) sinω(t− t′), (16a)

GA(t− t′) = +
1

ω
θ(t′ − t) sinω(t− t′), (16b)

GF (t− t′) = −
1

ω

1

2i

[

+ θ(t− t′) eiω(t−t′) + θ(t′ − t) e−iω(t−t′)
]

, (16c)

GW (t− t′) = −
1

ω

1

2i

[

− θ(t′ − t) eiω(t−t′) − θ(t− t′) e−iω(t−t′)
]

, (16d)

and the subscripts stand for retarded, advanced, Feynman, and Wheeler, respectively.
Recognize that the above four forms are special cases of the following general expression

−
1

ω

1

2i
[ a θ(t− t′)− b θ(t′ − t)] eiω(t−t′) +

1

ω

1

2i
[ c θ(t− t′)− d θ(t′ − t)] e−iω(t−t′), (17)

where the numerical constants a, b, c, and d, are arbitrary to the extent that they obey
the constraints a + b = 1, and c + d = 1. The special cases, a = 1, c = 1, corresponds to
GR; a = 0, c = 0, corresponds to GA; a = 1, c = 0, corresponds to GF ; and a = 0, c = 1,
corresponds to GW , respectively.

6. Show that we can write

x(t) =

∫ +∞

−∞

dt′G(t− t′)F (t′) + α0 e
iωt + β0 e

−iωt, (18)

where α0 and β0 are the arbitrary numerical constants. Use the initial conditions of
Eq. (2) in Eq. (18), in conjunction with Eq. (17), to derive

α0 = −
A

2
+ a

1

ω

1

2i

∫ 0

−∞

dt′F (t′)e−iωt′ − b
1

ω

1

2i

∫ +∞

0

dt′F (t′)e−iωt′ , (19a)

β0 = −
A

2
− c

1

ω

1

2i

∫ 0

−∞

dt′F (t′)e+iωt′ + d
1

ω

1

2i

∫ +∞

0

dt′F (t′)e+iωt′ . (19b)

Using the above expressions for α0 and β0 in Eq. (18) obtain

x(t) = −A cosωt−
1

ω

∫

t

0

dt′F (t′) sinω(t− t′), (20)

which uses a + b = 1 and c + d = 1.
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