Homework No. 02 (Fall 2013) PHYS 520A: Electromagnetic Theory I

Due date: Monday, 2013 Sep 9, 4.30pm

1. The Lorentz force law in SI units is

$$
\begin{equation*}
\mathbf{F}=q[\mathbf{E}+\mathbf{v} \times \mathbf{B}] . \tag{1}
\end{equation*}
$$

Write down the Lorentz force law in Lorentz-Heaviside units.
2. In Gaussian units the power radiated by an accelerated charged particle of charge e is given by the Larmor formula,

$$
\begin{equation*}
P=\frac{2 e^{2}}{3 c^{3}} a^{2} \tag{2}
\end{equation*}
$$

where a is the acceleration of the charged particle. Write down the Larmor formula in SI units, and in Lorentz-Heaviside units.
3. In Gaussian units the cyclotron frequency is

$$
\begin{equation*}
\omega_{0}=\frac{e B}{m c} \tag{3}
\end{equation*}
$$

where m is the mass of electron. Write down the expression for cyclotron frequency in SI units, and in Lorentz-Heaviside units.
4. (Ref. Schwinger et al., problem 1, chapter 1.) For an arbitrarily moving charge, the charge and current densities are

$$
\begin{equation*}
\rho(\mathbf{r}, t)=q \delta\left(\mathbf{r}-\mathbf{r}_{a}(t)\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{j}(\mathbf{r}, t)=q \mathbf{v}_{a}(t) \delta\left(\mathbf{r}-\mathbf{r}_{a}(t)\right) \tag{5}
\end{equation*}
$$

where $\mathbf{r}_{a}(t)$ is the position vector and

$$
\begin{equation*}
\mathbf{v}_{a}(t)=\frac{d \mathbf{r}_{a}}{d t} \tag{6}
\end{equation*}
$$

is the velocity of the charged particle. Verify the statement of conservation of charge,

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho(\mathbf{r}, t)+\boldsymbol{\nabla} \cdot \mathbf{j}(\mathbf{r}, t)=0 \tag{7}
\end{equation*}
$$

5. Show that the potential for a point charge, in three spatial dimensions,

$$
\begin{equation*}
\phi(\mathbf{r})=\frac{q_{a}}{4 \pi \varepsilon_{0}} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{a}\right|} \tag{8}
\end{equation*}
$$

satisfies the differential equation

$$
\begin{equation*}
-\varepsilon_{0} \nabla^{2} \phi(\mathbf{r})=q_{a} \delta^{(3)}\left(\mathbf{r}-\mathbf{r}_{a}\right) \tag{9}
\end{equation*}
$$

Solve the corresponding differential equation in one spatial dimension,

$$
\begin{equation*}
-\varepsilon_{0} \frac{d^{2}}{d x^{2}} \phi(x)=q_{a} \delta\left(x-x_{a}\right) . \tag{10}
\end{equation*}
$$

Hints:

(a) Using the definition of δ-function observe that

$$
\begin{equation*}
-\varepsilon_{0} \frac{d^{2}}{d x^{2}} \phi(x)=0, \quad \text { for } \quad x \neq x_{a} \tag{11}
\end{equation*}
$$

(b) Solve the homogeneous differential equation in Eq. (11) in terms of two integral constants in each of two regions,

$$
\phi(x)= \begin{cases}a_{1} x+b_{1}, & x<x_{a} \tag{12}\\ a_{2} x+b_{2}, & x>x_{a}\end{cases}
$$

(c) Integrate Eq. (10) from $x=x_{a}-\delta$ to $x=x_{a}+\delta$, for infinitesimal $\delta>0$, to derive the boundary condition on

$$
\begin{equation*}
\frac{d}{d x} \phi(x) . \tag{13}
\end{equation*}
$$

(d) Argue that, for consistency, we also require the boundary condition

$$
\begin{equation*}
\phi\left(x_{a}-\delta\right)=\phi\left(x_{a}+\delta\right) . \tag{14}
\end{equation*}
$$

(e) Use the boundary conditions to determine two of the four integral constants in Eq. (12). In particular find $a_{2}-a_{1}$ and $b_{2}-b_{1}$. The solutions can be expressed in the form

$$
\begin{equation*}
\phi(x)=-\frac{q}{2 \varepsilon_{0}}\left|x-x_{a}\right|+a x+b, \tag{15}
\end{equation*}
$$

where $2 a=a_{1}+a_{2}$ and $2 b=b_{1}+b_{2}$.
6. (Ref. Milton's lecture notes.) A plane wave is described by electric and magnetic fields of the form

$$
\begin{align*}
\mathbf{E} & =\mathbf{e}_{0} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega t} \tag{16}\\
\mathbf{B} & =\mathbf{b}_{0} e^{i \mathbf{k} \cdot \mathbf{r}-i \omega t} \tag{17}
\end{align*}
$$

where \mathbf{e}_{0} and \mathbf{b}_{0} are constants. From Maxwell's equations in free space (no charges or currents)
(a) Determine the relation between $\mathbf{e}_{0}, \mathbf{b}_{0}$, and \mathbf{k}.
(b) Determine the relation between ω and \mathbf{k}.
(c) Verify the statement of conservation of energy for a plane wave.
(d) Verify the statement of conservation of momentum for a plane wave.
7. Problem 6.11, Jackson 3rd edition.

