Homework No. 01 (Fall 2013)
 PHYS 520A: Electromagnetic Theory I

Due date: Wednesday, 2013 Aug 28, 4.30pm

1. (Ref. Schwinger et al., problem 1, chapter 1.) Verify the following identities explicitly:
(a) $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$,
(b) $\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{B}-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})$,
(c) $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=0$,
(d) $\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})=\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})-\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})-(\mathbf{A} \times \boldsymbol{\nabla}) \times \mathbf{B}+(\mathbf{B} \times \boldsymbol{\nabla}) \times \mathbf{A}$.
2. Problem 1.2, Jackson 3rd edition.
3. Problem 1.3, Jackson 3rd edition.
4. For the position vector

$$
\begin{equation*}
\mathbf{r}=r \hat{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}} \tag{1}
\end{equation*}
$$

show that

$$
\begin{equation*}
\boldsymbol{\nabla} r=\hat{\mathbf{r}}, \quad \boldsymbol{\nabla} \mathbf{r}=\mathbf{1}, \quad \boldsymbol{\nabla} \cdot \mathbf{r}=3, \quad \text { and } \quad \boldsymbol{\nabla} \times \mathbf{r}=0 . \tag{2}
\end{equation*}
$$

Further, show that for $n \neq 3$

$$
\begin{equation*}
\boldsymbol{\nabla} \frac{\mathbf{r}}{r^{n}}=\mathbf{1} \frac{1}{r^{n}}-\mathbf{r} \mathbf{r} \frac{n}{r^{n+2}}, \quad \boldsymbol{\nabla} \cdot \frac{\mathbf{r}}{r^{n}}=\frac{(3-n)}{r^{n}}, \quad \text { and } \quad \boldsymbol{\nabla} \times \frac{\mathbf{r}}{r^{n}}=0 \tag{3}
\end{equation*}
$$

For $n=3$ use divergence theorem to show that

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \frac{\mathbf{r}}{r^{n}}=4 \pi \delta^{(3)}(\mathbf{x}) \tag{4}
\end{equation*}
$$

5. An (idealized) infinitely long wire, (on the z-axis with infinitesimally small cross sectional area,) carrying a current I can be mathematically represented by the current density

$$
\begin{equation*}
\mathbf{J}(\mathbf{x})=\hat{\mathbf{z}} I \delta(x) \delta(y) \tag{5}
\end{equation*}
$$

A similar idealized wire forms a circular loop and is placed on the $x y$-plane with the center of the circular loop at the origin. Write down the current density of the circular loop carrying current I.

