(Bonus Take-Home) Exam No. 04 (Fall 2013) PHYS 520A: Electromagnetic Theory I

Due date: Wednesday, 2013 Nov 6, 4.30pm

1. (Based on Griffiths 4th ed., Problem 4.10.) Consider a uniformly polarized sphere of radius R described by

$$
\begin{equation*}
\mathbf{P}(\mathbf{r})=\alpha \mathbf{r} \theta(R-r) \tag{1}
\end{equation*}
$$

(a) Calculate $-\boldsymbol{\nabla} \cdot \mathbf{P}$. Thus, find the effective charge density to be

$$
\begin{equation*}
\rho_{\mathrm{eff}}=-3 \alpha \theta(R-r)+\alpha r \delta(r-R) . \tag{2}
\end{equation*}
$$

(b) Using

$$
\begin{equation*}
\phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} r^{\prime} \frac{\rho_{\mathrm{eff}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}, \tag{3}
\end{equation*}
$$

evaluate the electric potential to be

$$
\phi(\mathbf{r})= \begin{cases}-\frac{\alpha}{2 \varepsilon_{0}}\left(R^{2}-r^{2}\right), & r<R \tag{4}\\ 0, & R<r\end{cases}
$$

(Hint: Choose \mathbf{r} along $\hat{\mathbf{z}}$.)
(c) Evaulate the electric field

$$
\mathbf{E}(\mathbf{r})=-\boldsymbol{\nabla} \phi(\mathbf{r})= \begin{cases}-\frac{\alpha}{\varepsilon_{0}} \mathbf{r}, & r<R \tag{5}\\ 0, & r>R\end{cases}
$$

(d) Find the enclosed charge inside a sphere of radius r using

$$
\begin{equation*}
Q_{\mathrm{en}}=\int d^{3} r^{\prime} \rho_{\mathrm{eff}}\left(\mathbf{r}^{\prime}\right) \tag{6}
\end{equation*}
$$

for $r<R$ and $r>R$.
(e) Use Gauss's law,

$$
\begin{equation*}
\oint d \mathbf{a} \cdot \mathbf{E}=\frac{1}{\varepsilon_{0}} Q_{\mathrm{en}}, \tag{7}
\end{equation*}
$$

to verify the expression for the electric field in Eq. (5).
(f) Interpret the electric field for $r>R$ as the electric field due to the total charge inside $r \leq R$.

