# Exam No. 03 (Fall 2013) PHYS 520A: Electromagnetic Theory I 

Date: 2013 Nov 21

1. ( $\mathbf{3 0}$ points.) A uniformly polarized sphere of radius $R$ is described by

$$
\begin{equation*}
\mathbf{P}(\mathbf{r})=\alpha r^{2} \hat{\mathbf{r}} \theta(R-r) \tag{1}
\end{equation*}
$$

Find the effective charge density by calculating $-\boldsymbol{\nabla} \cdot \mathbf{P}$. In particular, you should obtain two terms, one containing $\theta(R-r)$ that is interpreted as a volume charge density, and another containing $\delta(R-r)$ that can be interpreted as a surface charge density.
2. (30 points.) Consider the Green's function equation

$$
\begin{equation*}
-\left(\frac{d^{2}}{d t^{2}}+\omega^{2}\right) G(t)=\delta(t) \tag{2}
\end{equation*}
$$

Verify, by substituting into Eq. (2), that

$$
\begin{equation*}
G(t)=-\frac{1}{\omega} \theta(t) \sin \omega(t) \tag{3}
\end{equation*}
$$

is a particular solution to the Green's function equation.
3. (40 points.) The expression for the electric potential due to a point charge placed in between two perfectly conducting semi-infinite slabs described by

$$
\varepsilon(z)= \begin{cases}\infty, & z<0  \tag{4}\\ \varepsilon_{0}, & 0<z<a \\ \infty, & a<z\end{cases}
$$

is given in terms of the reduced Green's function that satisfies the differential equation $\left(0<\left\{z, z^{\prime}\right\}<a\right)$

$$
\begin{equation*}
\left[-\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right] \varepsilon_{0} g\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \tag{5}
\end{equation*}
$$

with boundary conditions requiring the reduced Green's function to vanish at $z=0$ and $z=a$.
(a) Construct the reduced Green's function in the form

$$
g\left(z, z^{\prime}\right)= \begin{cases}A \sinh k z+B \cosh k z, & 0<z<z^{\prime}<a  \tag{6}\\ C \sinh k z+D \cosh k z, & 0<z^{\prime}<z<a\end{cases}
$$

and solve for the four coefficients, $A, B, C, D$, using the conditions

$$
\begin{align*}
g\left(0, z^{\prime}\right) & =0,  \tag{7a}\\
g\left(a, z^{\prime}\right) & =0,  \tag{7b}\\
\left.g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =0,  \tag{7c}\\
\left.\varepsilon_{0} \partial_{z} g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =-1 . \tag{7d}
\end{align*}
$$

Hint: The hyperbolic functions here are defined as

$$
\begin{equation*}
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) \quad \text { and } \quad \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right) . \tag{8}
\end{equation*}
$$

(b) Take the limit $k a \rightarrow \infty$ in your solution above to obtain the reduced Green's function for a single perfectly conducting slab,

$$
\begin{equation*}
\lim _{k a \rightarrow \infty} g\left(z, z^{\prime}\right)=\frac{1}{\varepsilon_{0}} \frac{1}{2 k} e^{-k\left|z-z^{\prime}\right|}-\frac{1}{\varepsilon_{0}} \frac{1}{2 k} e^{-k|z|} e^{-k\left|z^{\prime}\right|} . \tag{9}
\end{equation*}
$$

This should serve as a check for your solution to the reduced Green's function.

