Exam No. 01 (Fall 2013)

PHYS 520A: Electromagnetic Theory I

Date: 2013 Sep 19

1. Show that

$$\boldsymbol{\nabla}(\hat{\mathbf{r}} \cdot \mathbf{a}) = -\frac{1}{r}\,\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{a}) \tag{1}$$

for a uniform (homogeneous in space) vector **a**.

- 2. (Schwinger et al., problem 7, chapter 1.) A charge q moves in the vacuum under the influence of uniform fields **E** and **B**. Assume that $\mathbf{E} \cdot \mathbf{B} = 0$ and $\mathbf{v} \cdot \mathbf{B} = 0$.
 - (a) At what velocity does the charge move without acceleration?
 - (b) What is the speed when $\varepsilon_0 E^2 = \mu_0 H^2$?
- 3. A plane wave is incident, in vacuum, on a perfectly absorbing flat screen.
 - (a) Without compromising generality we can choose the screen at $z = z_a$. Starting with the statement of conservation of linear momentum,

$$\frac{\partial \mathbf{G}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{T} + \mathbf{f} = 0, \qquad (2)$$

integrate on the volume between $z = z_a - \delta$ and $z = z_a + \delta$ for infinitely small $\delta > 0$. Interpret the integral of force density **f** as the total force, **F**, on the plate. Further, note that the integral of momentum density **G** goes to zero for infinitely small δ . Thus, obtain

$$\mathbf{F} = -\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \int_{z_a-\delta}^{z_a+\delta} dz \, \boldsymbol{\nabla} \cdot \mathbf{T}.$$
 (3)

(b) Use divergence theorem to conclude

$$\mathbf{F} = -\oint d\mathbf{a} \cdot \mathbf{T},\tag{4}$$

where the closed surface encloses the volume between $z = z_a - \delta$ and $z = z_a + \delta$ for infinitely small $\delta > 0$. Choose the plane wave to be incident on the side $z = z - \delta$ of the plate, and assuming $\mathbf{E} = 0$ and $\mathbf{B} = 0$ on the side $z = z + \delta$, conclude that

$$\frac{\mathbf{F}}{A} = \hat{\mathbf{z}} \cdot \mathbf{T}|_{z=z_a-\delta},\tag{5}$$

Figure 1: A plane wave with direction of propagation \mathbf{k} incident on a screen.

where A is the total area of the screen. The electromagnetic stress tensor **T** in these expressions is given by

$$\mathbf{T} = \mathbf{1}U - (\mathbf{D}\mathbf{E} + \mathbf{B}\mathbf{H}),\tag{6}$$

where U is the electromagnetic energy density,

$$U = \frac{1}{2} (\mathbf{D} \cdot \mathbf{E} + \mathbf{B} \cdot \mathbf{H}). \tag{7}$$

(c) For the particular case when the plane wave is incident normally on the screen ($\theta = 0$ in Fig. 1) calculate the force per unit area in the direction normal to the screen by evaluating

$$\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A}.$$
(8)

Express the answer in terms of U using the properties of a plane wave: $\mathbf{k} \cdot \mathbf{E} = 0$, $\mathbf{k} \cdot \mathbf{B} = 0$, $\mathbf{E} \cdot \mathbf{B} = 0$, $|\mathbf{E}| = c|\mathbf{B}|$, and $kc = \omega$.

(d) Consider the case when the plane wave is incident obliquely on the screen such that $\hat{\mathbf{k}} \cdot \hat{\mathbf{z}} = \cos \theta$ and $\mathbf{H} \cdot \hat{\mathbf{z}} = 0$. Calculate the force per unit area in the direction normal to the screen by evaluating

$$\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A},\tag{9}$$

and the force per unit area tangential to the screen by evaluating

$$\frac{\mathbf{F} \cdot \hat{\mathbf{x}}}{A}.$$
 (10)

Express the answer in terms of U and θ using the properties of a plane wave.