Exam No. 01 (Fall 2013) PHYS 520A: Electromagnetic Theory I

Date: 2013 Sep 19

1. Show that

$$
\begin{equation*}
\boldsymbol{\nabla}(\hat{\mathbf{r}} \cdot \mathbf{a})=-\frac{1}{r} \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \mathbf{a}) \tag{1}
\end{equation*}
$$

for a uniform (homogeneous in space) vector a.
2. (Schwinger et al., problem 7, chapter 1.) A charge q moves in the vacuum under the influence of uniform fields \mathbf{E} and \mathbf{B}. Assume that $\mathbf{E} \cdot \mathbf{B}=0$ and $\mathbf{v} \cdot \mathbf{B}=0$.
(a) At what velocity does the charge move without acceleration?
(b) What is the speed when $\varepsilon_{0} E^{2}=\mu_{0} H^{2}$?
3. A plane wave is incident, in vacuum, on a perfectly absorbing flat screen.
(a) Without compromising generality we can choose the screen at $z=z_{a}$. Starting with the statement of conservation of linear momentum,

$$
\begin{equation*}
\frac{\partial \mathbf{G}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbf{T}+\mathbf{f}=0 \tag{2}
\end{equation*}
$$

integrate on the volume between $z=z_{a}-\delta$ and $z=z_{a}+\delta$ for infinitely small $\delta>0$. Interpret the integral of force density \mathbf{f} as the total force, \mathbf{F}, on the plate. Further, note that the integral of momentum density \mathbf{G} goes to zero for infinitely small δ. Thus, obtain

$$
\begin{equation*}
\mathbf{F}=-\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{z_{a}-\delta}^{z_{a}+\delta} d z \boldsymbol{\nabla} \cdot \mathbf{T} \tag{3}
\end{equation*}
$$

(b) Use divergence theorem to conclude

$$
\begin{equation*}
\mathbf{F}=-\oint d \mathbf{a} \cdot \mathbf{T} \tag{4}
\end{equation*}
$$

where the closed surface encloses the volume between $z=z_{a}-\delta$ and $z=z_{a}+\delta$ for infinitely small $\delta>0$. Choose the plane wave to be incident on the side $z=z-\delta$ of the plate, and assuming $\mathbf{E}=0$ and $\mathbf{B}=0$ on the side $z=z+\delta$, conclude that

$$
\begin{equation*}
\frac{\mathbf{F}}{A}=\left.\hat{\mathbf{z}} \cdot \mathbf{T}\right|_{z=z_{a}-\delta} \tag{5}
\end{equation*}
$$

Figure 1: A plane wave with direction of propagation \mathbf{k} incident on a screen.
where A is the total area of the screen. The electromagnetic stress tensor \mathbf{T} in these expressions is given by

$$
\begin{equation*}
\mathbf{T}=\mathbf{1} U-(\mathbf{D E}+\mathbf{B H}) \tag{6}
\end{equation*}
$$

where U is the electromagnetic energy density,

$$
\begin{equation*}
U=\frac{1}{2}(\mathbf{D} \cdot \mathbf{E}+\mathbf{B} \cdot \mathbf{H}) \tag{7}
\end{equation*}
$$

(c) For the particular case when the plane wave is incident normally on the screen $(\theta=0$ in Fig. 1) calculate the force per unit area in the direction normal to the screen by evaluating

$$
\begin{equation*}
\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A} \tag{8}
\end{equation*}
$$

Express the answer in terms of U using the properties of a plane wave: $\mathbf{k} \cdot \mathbf{E}=$ $0, \mathbf{k} \cdot \mathbf{B}=0, \mathbf{E} \cdot \mathbf{B}=0,|\mathbf{E}|=c|\mathbf{B}|$, and $k c=\omega$.
(d) Consider the case when the plane wave is incident obliquely on the screen such that $\hat{\mathbf{k}} \cdot \hat{\mathbf{z}}=\cos \theta$ and $\mathbf{H} \cdot \hat{\mathbf{z}}=0$. Calculate the force per unit area in the direction normal to the screen by evaluating

$$
\begin{equation*}
\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A} \tag{9}
\end{equation*}
$$

and the force per unit area tangential to the screen by evaluating

$$
\begin{equation*}
\frac{\mathbf{F} \cdot \hat{\mathbf{x}}}{A} \tag{10}
\end{equation*}
$$

Express the answer in terms of U and θ using the properties of a plane wave.

